Earth Engine Applications
Contents
11. Earth Engine Applications#
11.1. Introduction#
11.2. Technical requirements#
conda create -n gee python
conda activate gee
conda install -c conda-forge mamba
mamba install -c conda-forge geemap pygis
jupyter lab
# pip install pygis
import ee
import geemap
geemap.ee_initialize()
11.3. Forest cover change analysis#
Map = geemap.Map()
Map.add_basemap('HYBRID')
Map
dataset = ee.Image('UMD/hansen/global_forest_change_2021_v1_9')
dataset.bandNames().getInfo()
first_bands = ['first_b50', 'first_b40', 'first_b30']
first_image = dataset.select(first_bands)
Map.addLayer(first_image, {'bands': first_bands, 'gamma': 1.5}, 'Year 2000 Bands 5/4/3')
last_bands = ['last_b50', 'last_b40', 'last_b30']
last_image = dataset.select(last_bands)
Map.addLayer(last_image, {'bands': last_bands, 'gamma': 1.5}, 'Year 2021 Bands 5/4/3')
treecover = dataset.select(['treecover2000'])
treeCoverVisParam = {'min': 0, 'max': 100, 'palette': ['black', 'green']}
name1 = 'Tree cover (%)'
Map.addLayer(treecover, treeCoverVisParam, name1)
Map.add_colorbar(treeCoverVisParam, label=name1, layer_name=name1)
Map
threshold = 10
treecover_bin = treecover.gte(threshold).selfMask()
treeVisParam = {'palette': ['green']}
Map.addLayer(treecover_bin, treeVisParam, 'Tree cover bin')
treeloss_year = dataset.select(['lossyear'])
treeLossVisParam = {'min': 0, 'max': 21, 'palette': ['yellow', 'red']}
layer_name = 'Tree loss year'
Map.addLayer(treeloss_year, treeLossVisParam, layer_name)
Map.add_colorbar(treeLossVisParam, label=layer_name, layer_name=layer_name)
treeloss = dataset.select(['loss']).selfMask()
Map.addLayer(treeloss, {'palette': 'red'}, 'Tree loss')
Map
treegain = dataset.select(['gain']).selfMask()
Map.addLayer(treegain, {'palette': 'yellow'}, 'Tree gain')
Map
countries = ee.FeatureCollection(geemap.examples.get_ee_path('countries'))
geemap.ee_to_df(countries)
style = {'color': '#ffff0088', 'fillColor': '#00000000'}
Map.addLayer(countries.style(**style), {}, 'Countries')
geemap.zonal_stats_by_group(
treecover_bin,
countries,
'forest_cover.csv',
statistics_type='SUM',
denominator=1e6,
scale=1000,
)
geemap.pie_chart(
'forest_cover.csv', names='NAME', values='Class_sum', max_rows=20, height=600
)
geemap.bar_chart(
'forest_cover.csv',
x='NAME',
y='Class_sum',
max_rows=20,
x_label='Country',
y_label='Forest area (km2)',
)
geemap.zonal_stats_by_group(
treeloss,
countries,
'treeloss.csv',
statistics_type='SUM',
denominator=1e6,
scale=1000,
)
geemap.pie_chart(
'treeloss.csv', names='NAME', values='Class_sum', max_rows=20, height=600
)
geemap.bar_chart(
'treeloss.csv',
x='NAME',
y='Class_sum',
max_rows=20,
x_label='Country',
y_label='Forest loss area (km2)',
)
11.4. Surface water change analysis#
11.4.1. Surface water occurrence#
dataset = ee.Image('JRC/GSW1_3/GlobalSurfaceWater')
dataset.bandNames().getInfo()
Map = geemap.Map()
Map.add_basemap('HYBRID')
image = dataset.select(['occurrence'])
region = ee.Geometry.BBox(-99.957, 46.8947, -99.278, 47.1531)
vis_params = {'min': 0.0, 'max': 100.0, 'palette': ['ffffff', 'ffbbbb', '0000ff']}
Map.addLayer(image, vis_params, 'Occurrence')
Map.addLayer(region, {}, 'ROI', True, 0.5)
Map.centerObject(region)
Map.add_colorbar(vis_params, label='Water occurrence (%)', layer_name='Occurrence')
Map
hist = geemap.image_histogram(
image,
region,
scale=30,
x_label='Frequency',
y_label='Area (km2)',
title='Water Occurrence',
return_df=False,
)
hist
11.4.2. Surace water monthly history#
dataset = ee.ImageCollection('JRC/GSW1_3/MonthlyHistory')
size = dataset.size()
print(size.getInfo())
# dataset.aggregate_array("system:index").getInfo()
Map = geemap.Map()
image = dataset.filterDate('2020-08-01', '2020-09-01').first()
region = ee.Geometry.BBox(-99.957, 46.8947, -99.278, 47.1531)
vis_params = {'min': 0.0, 'max': 2.0, 'palette': ['ffffff', 'fffcb8', '0905ff']}
Map.addLayer(image, vis_params, 'Water')
Map.addLayer(region, {}, 'ROI', True, 0.5)
Map.centerObject(region)
Map
geemap.jrc_hist_monthly_history(
region=region, scale=30, frequency='month', denominator=1e4, return_df=True
)
geemap.jrc_hist_monthly_history(
region=region, scale=30, frequency='month', denominator=1e4, y_label='Area (ha)'
)
geemap.jrc_hist_monthly_history(
region=region,
start_month=6,
end_month=9,
scale=30,
frequency='month',
y_label='Area (ha)',
)
geemap.jrc_hist_monthly_history(
region=region,
start_month=6,
end_month=9,
scale=30,
frequency='year',
reducer='mean',
y_label='Area (ha)',
)
geemap.jrc_hist_monthly_history(
region=region,
start_month=6,
end_month=9,
scale=30,
frequency='year',
reducer='max',
y_label='Area (ha)',
)
11.5. Land cover change analysis#
Map = geemap.Map()
dataset = ee.ImageCollection("ESA/WorldCover/v100").first()
Map.addLayer(dataset, {'bands': ['Map']}, 'ESA Land Cover')
Map.add_legend(builtin_legend='ESA_WorldCover')
Map
df = geemap.image_area_by_group(
dataset, scale=1000, denominator=1e6, decimal_places=4, verbose=True
)
df
df.to_csv('esa_area.csv')
Map = geemap.Map(center=[40, -100], zoom=4)
Map.add_basemap('HYBRID')
nlcd = ee.Image('USGS/NLCD_RELEASES/2019_REL/NLCD/2019')
landcover = nlcd.select('landcover')
Map.addLayer(landcover, {}, 'NLCD Land Cover 2019')
Map.add_legend(
title="NLCD Land Cover Classification", builtin_legend='NLCD', height='465px'
)
Map
df = geemap.image_area_by_group(
landcover, scale=1000, denominator=1e6, decimal_places=4, verbose=True
)
df
df.to_csv('nlcd_area.csv')
11.6. Water app#
col = ee.FeatureCollection(geemap.examples.get_ee_path('countries'))
geemap.examples.get_ee_path('countries')
col.size().getInfo()
# Check geemap installation
import subprocess
try:
import geemap
except ImportError:
print('geemap package is not installed. Installing ...')
subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap'])
# Import libraries
import os
import ee
import geemap
import ipywidgets as widgets
from bqplot import pyplot as plt
from ipyleaflet import WidgetControl
# Create an interactive map
Map = geemap.Map(center=[40, -100], zoom=4, add_google_map=False)
Map.add_basemap('HYBRID')
Map.add_basemap('ROADMAP')
# Add Earth Engine data
fc = ee.FeatureCollection('TIGER/2018/Counties')
Map.addLayer(fc, {}, 'US Counties')
states = ee.FeatureCollection('TIGER/2018/States')
# Map.addLayer(states, {}, 'US States')
Map
# Designe interactive widgets
style = {'description_width': 'initial'}
output_widget = widgets.Output(layout={'border': '1px solid black'})
output_control = WidgetControl(widget=output_widget, position='bottomright')
Map.add_control(output_control)
admin1_widget = widgets.Text(
description='State:', value='Tennessee', width=200, style=style
)
admin2_widget = widgets.Text(
description='County:', value='Knox', width=300, style=style
)
aoi_widget = widgets.Checkbox(
value=False, description='Use user-drawn AOI', style=style
)
download_widget = widgets.Checkbox(
value=False, description='Download chart data', style=style
)
def aoi_change(change):
Map.layers = Map.layers[:4]
Map.user_roi = None
Map.user_rois = None
Map.draw_count = 0
admin1_widget.value = ''
admin2_widget.value = ''
output_widget.clear_output()
aoi_widget.observe(aoi_change, names='value')
band_combo = widgets.Dropdown(
description='Band combo:',
options=[
'Red/Green/Blue',
'NIR/Red/Green',
'SWIR2/SWIR1/NIR',
'NIR/SWIR1/Red',
'SWIR2/NIR/Red',
'SWIR2/SWIR1/Red',
'SWIR1/NIR/Blue',
'NIR/SWIR1/Blue',
'SWIR2/NIR/Green',
'SWIR1/NIR/Red',
],
value='NIR/Red/Green',
style=style,
)
year_widget = widgets.IntSlider(
min=1984, max=2020, value=2010, description='Selected year:', width=400, style=style
)
fmask_widget = widgets.Checkbox(
value=True, description='Apply fmask(remove cloud, shadow, snow)', style=style
)
# Normalized Satellite Indices: https://www.usna.edu/Users/oceano/pguth/md_help/html/norm_sat.htm
nd_options = [
'Vegetation Index (NDVI)',
'Water Index (NDWI)',
'Modified Water Index (MNDWI)',
'Snow Index (NDSI)',
'Soil Index (NDSI)',
'Burn Ratio (NBR)',
'Customized',
]
nd_indices = widgets.Dropdown(
options=nd_options,
value='Modified Water Index (MNDWI)',
description='Normalized Difference Index:',
style=style,
)
first_band = widgets.Dropdown(
description='1st band:',
options=['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2'],
value='Green',
style=style,
)
second_band = widgets.Dropdown(
description='2nd band:',
options=['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2'],
value='SWIR1',
style=style,
)
nd_threshold = widgets.FloatSlider(
value=0,
min=-1,
max=1,
step=0.01,
description='Threshold:',
orientation='horizontal',
style=style,
)
nd_color = widgets.ColorPicker(
concise=False, description='Color:', value='blue', style=style
)
def nd_index_change(change):
if nd_indices.value == 'Vegetation Index (NDVI)':
first_band.value = 'NIR'
second_band.value = 'Red'
elif nd_indices.value == 'Water Index (NDWI)':
first_band.value = 'NIR'
second_band.value = 'SWIR1'
elif nd_indices.value == 'Modified Water Index (MNDWI)':
first_band.value = 'Green'
second_band.value = 'SWIR1'
elif nd_indices.value == 'Snow Index (NDSI)':
first_band.value = 'Green'
second_band.value = 'SWIR1'
elif nd_indices.value == 'Soil Index (NDSI)':
first_band.value = 'SWIR1'
second_band.value = 'NIR'
elif nd_indices.value == 'Burn Ratio (NBR)':
first_band.value = 'NIR'
second_band.value = 'SWIR2'
elif nd_indices.value == 'Customized':
first_band.value = None
second_band.value = None
nd_indices.observe(nd_index_change, names='value')
submit = widgets.Button(
description='Submit', button_style='primary', tooltip='Click me', style=style
)
full_widget = widgets.VBox(
[
widgets.HBox([admin1_widget, admin2_widget, aoi_widget, download_widget]),
widgets.HBox([band_combo, year_widget, fmask_widget]),
widgets.HBox([nd_indices, first_band, second_band, nd_threshold, nd_color]),
submit,
]
)
full_widget
# Capture user interaction with the map
def handle_interaction(**kwargs):
latlon = kwargs.get('coordinates')
if kwargs.get('type') == 'click' and not aoi_widget.value:
Map.default_style = {'cursor': 'wait'}
xy = ee.Geometry.Point(latlon[::-1])
selected_fc = fc.filterBounds(xy)
with output_widget:
output_widget.clear_output()
try:
feature = selected_fc.first()
admin2_id = feature.get('NAME').getInfo()
statefp = feature.get('STATEFP')
admin1_fc = ee.Feature(
states.filter(ee.Filter.eq('STATEFP', statefp)).first()
)
admin1_id = admin1_fc.get('NAME').getInfo()
admin1_widget.value = admin1_id
admin2_widget.value = admin2_id
Map.layers = Map.layers[:4]
geom = selected_fc.geometry()
layer_name = admin1_id + '-' + admin2_id
Map.addLayer(
ee.Image().paint(geom, 0, 2), {'palette': 'red'}, layer_name
)
print(layer_name)
except:
print('No feature could be found')
Map.layers = Map.layers[:4]
Map.default_style = {'cursor': 'pointer'}
else:
Map.draw_count = 0
Map.on_interaction(handle_interaction)
# Click event handler
def submit_clicked(b):
with output_widget:
output_widget.clear_output()
print('Computing...')
Map.default_style = {'cursor': 'wait'}
try:
admin1_id = admin1_widget.value
admin2_id = admin2_widget.value
band1 = first_band.value
band2 = second_band.value
selected_year = year_widget.value
threshold = nd_threshold.value
bands = band_combo.value.split('/')
apply_fmask = fmask_widget.value
palette = nd_color.value
use_aoi = aoi_widget.value
download = download_widget.value
if use_aoi:
if Map.user_roi is not None:
roi = Map.user_roi
layer_name = 'User drawn AOI'
geom = roi
else:
output_widget.clear_output()
print('No user AOI could be found.')
return
else:
statefp = ee.Feature(
states.filter(ee.Filter.eq('NAME', admin1_id)).first()
).get('STATEFP')
roi = fc.filter(
ee.Filter.And(
ee.Filter.eq('NAME', admin2_id),
ee.Filter.eq('STATEFP', statefp),
)
)
layer_name = admin1_id + '-' + admin2_id
geom = roi.geometry()
Map.layers = Map.layers[:4]
Map.addLayer(ee.Image().paint(geom, 0, 2), {'palette': 'red'}, layer_name)
images = geemap.landsat_timeseries(
roi=roi,
start_year=1984,
end_year=2020,
start_date='01-01',
end_date='12-31',
apply_fmask=apply_fmask,
)
nd_images = images.map(lambda img: img.normalizedDifference([band1, band2]))
result_images = nd_images.map(lambda img: img.gt(threshold))
selected_image = ee.Image(
images.toList(images.size()).get(selected_year - 1984)
)
selected_result_image = ee.Image(
result_images.toList(result_images.size()).get(selected_year - 1984)
).selfMask()
vis_params = {'bands': bands, 'min': 0, 'max': 3000}
Map.addLayer(selected_image, vis_params, 'Landsat ' + str(selected_year))
Map.addLayer(
selected_result_image,
{'palette': palette},
'Result ' + str(selected_year),
)
def cal_area(img):
pixel_area = img.multiply(ee.Image.pixelArea()).divide(1e4)
img_area = pixel_area.reduceRegion(
**{
'geometry': geom,
'reducer': ee.Reducer.sum(),
'scale': 1000,
'maxPixels': 1e12,
'bestEffort': True,
}
)
return img.set({'area': img_area})
areas = result_images.map(cal_area)
stats = areas.aggregate_array('area').getInfo()
x = list(range(1984, 2021))
y = [item.get('nd') for item in stats]
fig = plt.figure(1)
fig.layout.height = '270px'
plt.clear()
plt.plot(x, y)
plt.title('Temporal trend (1984-2020)')
plt.xlabel('Year')
plt.ylabel('Area (ha)')
output_widget.clear_output()
plt.show()
if download:
out_dir = os.path.join(os.path.expanduser('~'), 'Downloads')
out_name = 'chart_' + geemap.random_string() + '.csv'
out_csv = os.path.join(out_dir, out_name)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
with open(out_csv, 'w') as f:
f.write('year, area (ha)\n')
for index, item in enumerate(x):
line = '{},{:.2f}\n'.format(item, y[index])
f.write(line)
link = geemap.create_download_link(
out_csv, title="Click here to download the chart data: "
)
display(link)
except Exception as e:
print(e)
print('An error occurred during computation.')
Map.default_style = {'cursor': 'default'}
submit.on_click(submit_clicked)